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Outline 

•  Motivations and challenges of fully kinetic ion simulations 

•  Enabling Technologies 
–  Fully implicit time stepping + scalable solver (MG precond 

JFNK) 
–  Exact discrete conservation properties 
–  Phase-space adaptivity: vth adaptivity + Lagrangian mesh 
 

•  Progress report: verification, spherical geometry (shocks), 
kinetic effects at interfaces 
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Kinetic effects may be important in ICF 

Hydro Kinetic 
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Figure from M.J. Rosenberg, PRL (2014) 
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We consider fully kinetic ions + fluid electrons 

Vlasov-Fokker-Planck 
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ICF kinetic simulation tools are sparse 

•  French CEA’s FPion [1] and FUSE [2] codes: 
•  Semi-implicit (Δt ~ τcol e.g. can’t study pusher mix) 
•  Adaptive grid (r-v), but non-conservative, single-species velocity 

•  Recent implosion calculation using the LSP code [3] 
•  Hybrid PIC code 
•  Difficulties with spherical geometry 
•  Nanbu collision operator (suspect when using Δt>τcol [4]) 

•  Our approach: 
•  Fully nonlinearly implicit (Δt >> τcol) 
•  Multispecies adaptive grid (r-v) using local thermal velocity/species 
•  Fully conservative (mass, momentum, energy) 

[1] O. Larroche, EPJ 27, pp.131-146 (2003) 
[2] B. Peigney et al., JCP 278 (2014) 
[3] T.J.T. Kwan et al., IFSA2015, Seattle WA (2015) 
[4] A.M. Dimits et al., JCP 228, pp.4881-4892 (2009) 
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Challenges of fully kinetic simulations for ICF 
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•  Disparate temperatures 
during implosion dictate 
velocity resolution. 
–  vth,max determines Lv 

–  vth,min determines Δv 

•  Shock width and capsule 
size dictate physical space 
resolution 
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Numerical resolution challenges 

•  Phase space resolution challenges 
–  Intra species vth,max /vth,min~100 
–  Inter species (vth,α /vth,β)max~30 
–  Nv~ [10(vth,max/vth,min)x(vth,α /vth,β)]2 ~109 
–  Nr ~ 103-104 
–  N=NrNv~1012-1013 unknowns 
 

•  Temporal resolution challenges 
–  tsim=1 ns  
–  Nt=109 time steps 

3 Numerical Challenges and Algorithms 3

becomes quite restrictive. In a typical shell implosion, the radius decreases from a mm to a few tens
of µm, about 10-30 times. Assuming the lower limit, a static mesh would have to provide su�cient
resolution at the final point of compression, say 50-100 points. This, in turn, would require an
initial uniform static radial mesh of:

N
r

⇠ 103.

Temporal resolution. Challenges in the temporal integration of VFP stem from the two main
phenomena at play: streaming and collisions. These have to be compared against the total simu-
lation time, i.e., the implosion time. Assuming an initial radius R of 1mm, and a typical implosion
velocity v

i

of 20 cm/µs, we find:

⌧
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The temporal stability limit for integrating collisions with an explicit time integration scheme is
given by the corresponding Courant condition:
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where we have used Eq. 1. Time steps for the early compression phase will be orders of magnitude
more restrictive even though the plasma is less dense (n

i

⇠ 0.225 g/cm3), because it is significantly
colder (T

i

⇠ 1 eV). This result implies that an explicit scheme, for the conditions and velocity-space
resolution stated, will require > 109 � 1010 time steps to reach the implosion time scale.

Regarding streaming, the time step explicit stability limits of advection in physical and velocity
space are comparable, and are given by the corresponding CFL constraint for the maximum velocity
under consideration in our discretization, v
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th
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Thus, we find streaming to be significantly less restrictive numerically than collisions.
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•  Mesh adaptivity: 
–  v-space adaptivity with vth normalization, Nv~104-105 
–  Lagrangian mesh in physical space, Nr~102 

–  N=NvNr~106~107 

•  Implicit time-stepping: 
–  JFNK nonlinear solver 
–  Multigrid preconditioning [1,2] 
–  Δtimp=Δtstr~10-3 ns, Nt~103-104 

•  Exact conservation properties (nonlinear discretization) 

Our approach: Implicit time-stepping and 
adaptive meshing, exact conservation properties 

[1] Chacon et al., JCP 157, pp. 618-653 (2000) 
[2] Chacon el al., JCP 157, pp. 654-682 (2000)  

v̂ = v/vth,↵
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Implicit time-stepping for collision operator: 
nonlinear solver and preconditioning 

•  JFNK as nonlinear solver [3]: 

•  Right preconditioning strategy: 
 
 
•  Block diagonalization with lagged coefficients: 

fk = fk�1 � JkRk�1

Jk
�
P k�1

��1
P k�1�fk = �Rk�1

[3] D.A. Knoll et al., JCP 193, pp. 357-397 (2004) 
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MG preconditioner keeps linear iterations bounded 
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Implicit solver performance is O(Nv)! 
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[4] W.T. Taitano, JCP 297, pp.357-380 (2015) 
 

Solver CPU time versus size of unknown 



Slide 12 U N C L A S S I F I E D 

Exact energy conservation in collision operator is 
critical for accuracy 

•  For demonstration, we consider electron-proton thermalization 

•  More details in Taitano’s talk 
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Adaptivity in velocity space: vth adaptivity 
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Adaptivity in physical space: Lagrangian mesh 
evolves with capsule 
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Phase-space mesh adaptivity: exact transformation 
of FP equation 

1D spherical (with logical mesh); 2D cylindrical geometry in velocity space 624 CHACÓN ET AL.

FIG. 1. Diagram of the local cylindrical velocity coordinate system (vr , vp) considered in this work. Cylin-
drical symmetry is assumed. The spherical radius vector r is included for reference.

by-product, the required numerical representation of the subordinate problems for H and
G, which will be somewhat different from the traditional treatment.

3.1. Definition of the Computational Velocity Domain

So far, the discussionhas been independent of a particular geometry and/or dimensionality
in velocity space. To focus the discussion that follows, a 2D cylindrical velocity space with
angular symmetry is adopted. This space is spanned by (vr , vp), where vr is the cylindrical
z-axis, and vp is the cylindrical r -axis (Fig. 1), and vr ∈ [0, vlimit]; vp ∈ [0, vlimit]. Here, vlimit
is typically set to several times the characteristics velocity of the problem, v0.
The domain is discretized with an integer mesh and a half mesh (Fig. 2). The integer

mesh is defined using Nr (+1) nodes in the vr axis, and Np(+1) nodes in the vp axis, with
the constraints

vr,1 = 0, vr,Nr = vlimit

vp,1 = 0, vp,Np = vlimit.

Each velocity node is characterized by a pair (vr,i , vp, j ), with i = 1, . . . , Nr (+1), and
j = 1, . . . , Np(+1). The additional (i = Nr + 1, j) and (i, j = Np + 1) nodes at the bound-
aries will serve a double purpose: (1) they will be used to impose the far-field boundary
conditions for the Rosenbluth potentials, and (2) they will allow an accurate determina-
tion of the friction and diffusion coefficients of the Fokker–Planck collision operator at the

FIG. 2. Diagram of the 9-point stencil in velocity space employed in the discretization of the Fokker–Planck
collision operator.

Coordinate 
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Fokker-Planck equation: inertial terms 

•  VRFP equation in transformed coordinates 

Inertial terms due 
to vth adaptivity 
and Lagrangian 
mesh 
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Energy conservation in inertial terms is also critical 
for long-term accuracy 
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vth adaptivity enables realistic simulations of 
multispecies plasmas 

•  D-e-α, 3 species 
thermalization problem 

•  Resolution with static grid: 

•  Resolution with adaptivity and 
asymptotics:  

 
•  Mesh savings of  

Nv ⇠ 2

✓
vth,e,1
vth,D,0

◆2

= 140000⇥ 70000

Nv = 128⇥ 64

⇠ 106
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Summary 

•  Developed a fully implicit, optimal Fokker-Planck solver 

•  Features phase-space adaptivity, optimal implicit time-stepping, 
and exact conservation properties 
–  MG preconditioned nonlinear solver 
–  Exact transformation of FP equation (no remapping) 
–  Careful conservative discretization (next talk) 

 
•  As a result, we save many orders of magnitude in total simulation 

time 
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Current and Future Focus 

•  Both Lagrangian mesh and spherical geometry are 
implemented and being characterized 

•  Performing extensive verification campaign with shock 
propagation in planar and spherical geometry (next talk) 

•  Carry out planar geometry simulation campaign (this FY) 

•  Prepare for spherical ICF simulations (next FY) 
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BACKUP SLIDES 
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   Questions? 
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How does ICF work? 

 
 
 
 
 
 
 

Laser Irradiation 

fuel

capsule

compression
 to high T, ρ

Surface
blowoff Rocket force
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Rosenbluth-Fokker-Planck collision operator: 
simultaneous conservation of mass, momentum, 

and energy 
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Rosenbluth-FP collision operator: 
conservation properties results from symmetries 
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Introducing these terms in the collision operator, and noting that the normalized collision operator is:
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2.6 Treatment of Rosenbluth Potentials between Cross Species
Velocity Space

2.7 Conservative Discretization

We develop a mass, momentum, and energy conserving discretization for the Fokker-Planck operator.

2.7.1 Discrete Mass Conservation Scheme

First, recall the continuum mass conservation statement,
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D
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Here, the surface integral requires the evaluation of the collisional fluxes at the velocity boundaries to be
zero. In the discrete, we do the exactly identical treatment by numerically setting the fluxes to zero at the
boundary.

2.7.2 Discrete Momentum Conservation Scheme

For momentum conservation, the following relation must hold:
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2V Rosenbluth-FP collision operator: 
numerical conservation of energy 
•  The symmetry to enforce is: 

•  Due to discretization error: 

•  Introduce a constraint coefficient: 
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•  Simultaneous conservation of momentum and energy: 
 
 
     with: 

2V Rosenbluth-FP collision operator: 
numerical conservation of momentum+energy 

Energy 
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Numerical Results: 
Single-species initial random distribution 
thermalizes to a Maxwellian 
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Numerical Results: 
Conservation properties enforced down to 
nonlinear convergence tolerance 
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Vlasov equation: Inertial term simultaneous 
conservation of mass, momentum, and energy 
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•  Focus on temporal inertial terms due to normalization wrt vth(r,t) (OD): 

 

•  Mass conservation can be trivially shown by 0th velocity space moment: 

FP equation with adaptivity in velocity 
space: Temporal inertial terms 
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2.8 Conservative Discretization with Velocity Space Adaptivity

We discuss the development of a conservative discretization for the 0D conservation equation with velocity
space adaptivity. We begin by developing an independent mass, momentum, and energy conserving scheme,
then develop a mass and momentum scheme, and finally develop a simultaneous mass, momentum, and
energy conserving discretization scheme.

2.8.1 Velocity Space Adaptivity: Exact Mass Conservation

We show that mass conservation is trivially enforced for the new conservation equation shown in equation
(2.4.1) for a 0D case. Ignoring the collision operator (as can be shown to be play no role in the proof of

conservation properties with mesh adaptivity), and expanding
p
gv, v̇||, v̇?, and using v = vth,↵bv; f↵ = bf/v3th,↵,

we obtain:
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Since, @tlnT↵ = T�1

↵ @tT↵, and T↵ ⌘ v2th,↵, by multiplying the entire equation by v2th,↵ (the motive will be
clear in a while) we obtain:
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Mass conservation can be shown by taking the 0th moment of the above equation:
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Mass conservation is enforced as long as the divergence operator in velocity space is discretized such that the
velocity space flux at the boundary is set to zero.

2.8.2 Velocity Space Adaptivity: Exact Momentum Conservation

We derive the exact momentum conservation scheme of the new conservation equation shown in equation
(2.4.1) for a 0D case. We begin with equation (2.8.3),
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2.8 Conservative Discretization with Velocity Space Adaptivity

We discuss the development of a conservative discretization for the 0D conservation equation with velocity
space adaptivity. We begin by developing an independent mass, momentum, and energy conserving scheme,
then develop a mass and momentum scheme, and finally develop a simultaneous mass, momentum, and
energy conserving discretization scheme.

2.8.1 Velocity Space Adaptivity: Exact Mass Conservation

We show that mass conservation is trivially enforced for the new conservation equation shown in equation
(2.4.1) for a 0D case. Ignoring the collision operator (as can be shown to be play no role in the proof of

conservation properties with mesh adaptivity), and expanding
p
gv, v̇||, v̇?, and using v = vth,↵bv; f↵ = bf/v3th,↵,

we obtain:
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which can be simplified as:
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Since, @tlnT↵ = T�1

↵ @tT↵, and T↵ ⌘ v2th,↵, by multiplying the entire equation by v2th,↵ (the motive will be
clear in a while) we obtain:
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Mass conservation can be shown by taking the 0th moment of the above equation:
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Mass conservation is enforced as long as the divergence operator in velocity space is discretized such that the
velocity space flux at the boundary is set to zero.

2.8.2 Velocity Space Adaptivity: Exact Momentum Conservation

We derive the exact momentum conservation scheme of the new conservation equation shown in equation
(2.4.1) for a 0D case. We begin with equation (2.8.3),
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Momentum conservation can be shown by taking the first velocity moment of the above equation:
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Here, the first velocity space moment of bf↵ and brv ·
⇣

~
bv bf↵

⌘

must cancel out. However, in the discrete, due to

discretization error, this relation is not satisfied (in general). In order to enforce this property in the discrete,
we introduce ⌥

t,↵
into the conservation equation:
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Here, ⌥
t,↵

is defined as:
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The ⌥
t,↵

factor enforces a component wise momentum conservation, however, ⌥?,↵ = 1 due to cylindrical

symmetry (i.e. perpendicular component of momentum is automatically conserved due to symmetry).

2.8.3 Velocity Space Adaptivity: Exact Energy Conservation

We derive the exact momentum conservation scheme of the new conservation equation shown in equation
(2.4.1) for a 0D case. We begin with equation (2.8.3),
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Energy conservation can be shown by taking the trace of the 2nd velocity moment of the above equation:
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The important property one must enforce is that the 2nd moment of bf↵ and
brv
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·
⇣
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must cancel each

other out. In the discrete, this is generally not possible. In order to enforce exact energy conservation, we
modify equation (2.8.10) as:
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Here, �t,↵ is the constraint coe�cient that enforces exact cancellation between the 2nd moments of bf↵ and
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2.8.4 Velocity Space Adaptivity: Exact Mass and Momentum Conservation

Up to this point, we have discussed the development of a separate mass, momentum, and energy conserving
scheme for a velocity space adaptive mesh scheme. We now extend the discretization scheme to a simultaneous
mass and moment conserving scheme. In the development of the exact momentum conserving scheme, we

recognized that in the discrete, the 1st velocity moments of bf↵ and brv ·
⇣

~
bv bf↵

⌘

may not cancel exactly, hence

introducing the ⌥
t,↵

factor in brv ·
⇣

~
bv bf↵

⌘

. In a similar spirit if one takes the 0th velocity moment of equation

(2.8.7), one obtains:

vth,↵ [@t (vth,↵n↵)� @tvth,↵n↵] = 0. (2.8.14)

In the continuum, we can perform the following manipulation,

@t (vth,↵n↵) = vth,↵@tn↵ + @tvth,↵n↵. (2.8.15)

Substituting this expression into equation (2.8.14), we obtain:

v2th,↵@tn↵ = 0, (2.8.16)

which is precisely a statement of mass conservation. However, in order for this expression to take place, we
require the chain rule shown in equation (2.8.15) to hold. In the discrete, the chain rule will not be satisfied
exactly. In order to enforce the chain rule exactly, we modify equation (2.8.7) as:
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Here, ⌘t,↵ is a discrete consistency source which is defined as:
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which acts to enforce the chain rule shown in equation (2.8.15) exactly in the discrete. Note that unlike the
⌥

t,↵
factor which is a global (moment) quantity, ⌘t,↵ is a local term in phase-space (a function of v). With

⌘t,↵ defined as a source in the conservation equation, this does not rigorously enforce momentum conservation
in the discrete. In order to enforce momentum conservation, we redefine ⌥
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such as to absorb the new

truncation error arising from introducing ⌘t,↵:
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Energy conservation shown from 2nd velocity moment: 

This property relies on: 
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We prove that equation (2.8.17) will enforce exact mass and momentum conservation in the discrete.
Taking the 1st velocity moment of equation (2.8.17):
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momentum conservation is shown. Now, taking the 0th moment, we obtain:

((((((((
vth,↵@t (vth,↵n↵)�(((((((

vth,↵@tvth,↵n↵ +
n

v2th,↵@tn↵

o

�⇠⇠⇠vth,↵
�

⇠⇠⇠⇠⇠⇠
@t (vth,↵n↵)�⇠⇠⇠⇠⇠@tvth,↵n↵

 

(2.8.21)

= v2th,↵@tn↵ = 0, (2.8.22)

mass conservation is shown. We also show that the addition of ⌘t,↵ does not break local mass conservation
property. By substituting equation (2.8.18) into equation (2.8.17), we obtain:
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which is in a purely conservative form.

2.8.5 Velocity Space Adaptivity: Exact Mass, Momentum, and Energy Conser-
vation

Finally, we develop a simultaneous mass, momentum, and energy conserving scheme with velocity space
adaptivity. We perform a recursive enslavement of the mass and momentum conserving equation (equation
(2.8.17)) into the energy conserving equation (equation (2.8.12)), by introducing a discrete consistency source,
⇠t,↵:
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and �t,↵ redefined to take into account of ⇠t,↵ as:
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Here, ⌘t,↵ is defined in equation (2.8.18), and ⌥
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is defined as:
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The important property one must enforce is that the 2nd moment of bf↵ and
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must cancel each

other out. In the discrete, this is generally not possible. In order to enforce exact energy conservation, we
modify equation (2.8.10) as:
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Here, �t,↵ is the constraint coe�cient that enforces exact cancellation between the 2nd moments of bf↵ and
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2.8.4 Velocity Space Adaptivity: Exact Mass and Momentum Conservation

Up to this point, we have discussed the development of a separate mass, momentum, and energy conserving
scheme for a velocity space adaptive mesh scheme. We now extend the discretization scheme to a simultaneous
mass and moment conserving scheme. In the development of the exact momentum conserving scheme, we

recognized that in the discrete, the 1st velocity moments of bf↵ and brv ·
⇣

~
bv bf↵

⌘

may not cancel exactly, hence

introducing the ⌥
t,↵

factor in brv ·
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. In a similar spirit if one takes the 0th velocity moment of equation

(2.8.7), one obtains:

vth,↵ [@t (vth,↵n↵)� @tvth,↵n↵] = 0. (2.8.14)

In the continuum, we can perform the following manipulation,

@t (vth,↵n↵) = vth,↵@tn↵ + @tvth,↵n↵. (2.8.15)

Substituting this expression into equation (2.8.14), we obtain:

v2th,↵@tn↵ = 0, (2.8.16)

which is precisely a statement of mass conservation. However, in order for this expression to take place, we
require the chain rule shown in equation (2.8.15) to hold. In the discrete, the chain rule will not be satisfied
exactly. In order to enforce the chain rule exactly, we modify equation (2.8.7) as:
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Here, ⌘t,↵ is a discrete consistency source which is defined as:
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which acts to enforce the chain rule shown in equation (2.8.15) exactly in the discrete. Note that unlike the
⌥

t,↵
factor which is a global (moment) quantity, ⌘t,↵ is a local term in phase-space (a function of v). With

⌘t,↵ defined as a source in the conservation equation, this does not rigorously enforce momentum conservation
in the discrete. In order to enforce momentum conservation, we redefine ⌥
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truncation error arising from introducing ⌘t,↵:

⌥
t,↵

=



⌥||,↵ 0
0 ⌥?,↵

�

=

2

6

4

�vth,↵@tvth,↵hv||, bf↵iv+hbv||,⌘t,↵i
v

vth,↵@tvth,↵hv||,brv·(~bv bf↵)i
v

0

0
�vth,↵@tvth,↵hv?, bf↵i

v
+hbv?,⌘t,↵iv

vth,↵@tvth,↵hv?,brv·(~bv bf↵)i
v

3

7

5

. (2.8.19)

14

 

•  Rewrite as: 

 

All conservation law can be enforced 
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2.8 Conservative Discretization with Velocity Space Adaptivity

We discuss the development of a conservative discretization for the 0D conservation equation with velocity
space adaptivity. We begin by developing an independent mass, momentum, and energy conserving scheme,
then develop a mass and momentum scheme, and finally develop a simultaneous mass, momentum, and
energy conserving discretization scheme.

2.8.1 Velocity Space Adaptivity: Exact Mass Conservation

We show that mass conservation is trivially enforced for the new conservation equation shown in equation
(2.4.1) for a 0D case. Ignoring the collision operator (as can be shown to be play no role in the proof of

conservation properties with mesh adaptivity), and expanding
p
gv, v̇||, v̇?, and using v = vth,↵bv; f↵ = bf/v3th,↵,

we obtain:
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which can be simplified as:
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Since, @tlnT↵ = T�1

↵ @tT↵, and T↵ ⌘ v2th,↵, by multiplying the entire equation by v2th,↵ (the motive will be
clear in a while) we obtain:
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Mass conservation can be shown by taking the 0th moment of the above equation:
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Mass conservation is enforced as long as the divergence operator in velocity space is discretized such that the
velocity space flux at the boundary is set to zero.

2.8.2 Velocity Space Adaptivity: Exact Momentum Conservation

We derive the exact momentum conservation scheme of the new conservation equation shown in equation
(2.4.1) for a 0D case. We begin with equation (2.8.3),
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We prove that equation (2.8.17) will enforce exact mass and momentum conservation in the discrete.
Taking the 1st velocity moment of equation (2.8.17):
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momentum conservation is shown. Now, taking the 0th moment, we obtain:
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= v2th,↵@tn↵ = 0, (2.8.22)

mass conservation is shown. We also show that the addition of ⌘t,↵ does not break local mass conservation
property. By substituting equation (2.8.18) into equation (2.8.17), we obtain:
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which is in a purely conservative form.

2.8.5 Velocity Space Adaptivity: Exact Mass, Momentum, and Energy Conser-
vation

Finally, we develop a simultaneous mass, momentum, and energy conserving scheme with velocity space
adaptivity. We perform a recursive enslavement of the mass and momentum conserving equation (equation
(2.8.17)) into the energy conserving equation (equation (2.8.12)), by introducing a discrete consistency source,
⇠t,↵:
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with,

⇠t,↵ = vth,↵

n

@t

⇣

vth,↵ bf↵

⌘

� @tvth,↵

h

bf↵ + brv ·
⇣

⌥
t,↵

~
bv bf↵

⌘io

+ ⌘t,↵

�
(

@t

⇣

v2th,↵
bf↵

⌘

� @tv
2

th,↵

"

bf↵ +
brv

2
·
⇣

~
bv bf↵

⌘

#)

, (2.8.25)

and �t,↵ redefined to take into account of ⇠t,↵ as:
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Here, ⌘t,↵ is defined in equation (2.8.18), and ⌥
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is defined as:
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Cold species
essentially a delta
function on hot
species' mesh

Hot

Cold Cold

Hot

Hot species' mesh
is too coarse for
interpolation on
cold species' mesh

Asymptotic Formulation of Interspecies 
Collisions for vth,f >> vth,s 

Argument of exp: vf/vth,s >> 1  Argument of exp: vs/vth,f << 1  

 

 
 
[5] W.T. Taitano, JCP accepted (2016) 
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1D2V Mach 5 shock agrees well with 
known reference solution 
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M=5 planar steady state shock solution (SSS) comparison 
between iFP (solid line) and reference solution from  
 [10] (open circles).  
 [10] F. Vidal et al., PoF B, 3182 (1993) 
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Lagrangian mesh tracks shock  
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Test of Lagrangian mesh capability for a M=5 shock in lab 
frame. A good agreement in solutions between Lagrangian 
mesh and SSS is achieved.  
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Spherical geometry is being tested 

Test of spherical shock convergence. Shock reflection is observed.  
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More moments for Lagrangian mesh 
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Stably and accurately integrate 
with Δt >> τcol 

Test of implicit solver with D-Al interface problem 
with Δt = 4x104 τcol. 
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Velocity space adaption does not help for 
interspecies collisions 

•  For electron-ion collisions, vth,e/vth,i >> 1 

•  Similarly, for α-ion collisions, vth,α/vth,I >> 1 

 
•  Very stringent mesh resolution requirements if determining 

potentials via: 

•  Mesh requirement grows as:  
 
•  Velocity space adaption helps ONLY for self-species, but not for 

interspecies! We need asymptotics 

v
||

v
┴ Fast Grid

Slow Grid

Region of rapidly
varying slow
potential structure.

r2
vHj (~v) = �8⇡fj (~v) r2
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Asymptotics: Fast on slow 

•  Asymptotic potentials diverge as v à 0 
•  Solution: Near v = 0, we coarse-grain slow potentials to 

modify singularity 

hHssi⌦TCR
=

R
⌦TCR

Hssd
3v

R
⌦TCR

d3v

r2
vGfs = Hfs

Hfs =

⇢
Hfs,asy if ~vf 62 ⌦TCR

hHssi⌦TCR
else

�
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Numerical Results: 
Two-species thermal and momentum equilibration 
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Numerical Results: 
Conservation is enforced down to nonlinear 
tolerance 
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Non-Maxwellian effects for hot-cold proton 
thermalization 

Initial Condition With positivity Without positivity 
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Our approach: nonlinearly implicit, adaptive, 
conserving Rosenbluth-VFP (cont.) 
•  Why Rosenbluth-VFP? 
•  Linearization and/or the use of asymptotic 

approximations of collision operators are not warranted 
in these systems: 
–  Linearization is not allowed because deviations from 

Maxwellian can be significant (Kn ~ 0.1 in fuel, boundary 
effects at material boundaries) 

–  Ion thermal velocities are comparable to Gamow peak at 
bang time (                            ) 

–  Multiple ion species with similar mass and temperatures 

•  Nonlinear Rosenbluth-VFP allows for first-principles 
simulations 

vth/vG ⇠ 1/
p
3
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Static uniform mesh is not practical 

•  Temperature disparities of 104 (for a single species) 
  

•  10 points per vth 

 
•  For multiple species (e.g. alpha-D/T) 

•  Static spatial resolution: 
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Challenges of Rosenbluth-VFP: temporal 
stiffness. Explicit method are impractical 

•  Collision frequency dictates explicit time step: 
 
 

•  Typical conditions at end of compression phase: 

 
 

3 Numerical Challenges and Algorithms 3

becomes quite restrictive. In a typical shell implosion, the radius decreases from a mm to a few tens
of µm, about 10-30 times. Assuming the lower limit, a static mesh would have to provide su�cient
resolution at the final point of compression, say 50-100 points. This, in turn, would require an
initial uniform static radial mesh of:

N
r

⇠ 103.

Temporal resolution. Challenges in the temporal integration of VFP stem from the two main
phenomena at play: streaming and collisions. These have to be compared against the total simu-
lation time, i.e., the implosion time. Assuming an initial radius R of 1mm, and a typical implosion
velocity v

i

of 20 cm/µs, we find:

⌧
i

⇡ R

v
i

⇠ 5 ns.

The temporal stability limit for integrating collisions with an explicit time integration scheme is
given by the corresponding Courant condition:
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We take typical conditions at the end of the compression phase for density and temperature,
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⇡ 2.5 keV.
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where we have used Eq. 1. Time steps for the early compression phase will be orders of magnitude
more restrictive even though the plasma is less dense (n

i

⇠ 0.225 g/cm3), because it is significantly
colder (T

i

⇠ 1 eV). This result implies that an explicit scheme, for the conditions and velocity-space
resolution stated, will require > 109 � 1010 time steps to reach the implosion time scale.

Regarding streaming, the time step explicit stability limits of advection in physical and velocity
space are comparable, and are given by the corresponding CFL constraint for the maximum velocity
under consideration in our discretization, v

max

⇠ 10vmax

th

:

�tstr
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.

For T
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⇡ 100 keV , we have vmax

th

⇠ 3 ⇥ 108 cm/s. Therefore, for R ⇡ 0.1 cm and N
r

⇠ 103, we
find:

�tstr
exp

⇠ 10�4 � 10�5 ns.

Thus, we find streaming to be significantly less restrictive numerically than collisions.
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Our approach: nonlinearly implicit, 
adaptive, conserving Rosenbluth-VFP 

•  Adaptive meshing to alleviate mesh requirements: 
–  Velocity space adaptivity via renormalization 

(Nv~104-105) 

–  Spatial adaptivity via Lagrangian mesh (Nr ~ 102) 

•  Strict conservation properties (mass, momentum, energy). 

v̂ = v/vth(r, t)

N = Nv ⇥Nr ⇠ 106 � 107



Slide 49 U N C L A S S I F I E D 

Logo choices 
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